Ana içeriğe geç
Tüm KoleksiyonlarGÖSTERGELER
Zaman serisi çalışması
Zaman serisi çalışması
A
Yazar: Anthony Cabos
Bir yıldan uzun süre önce güncellendi

Bu makale zaman serilerinin incelenmesini detaylandıracaktır. Bu çalışmanın amacı, bileşenlerini anlamak ve tahminler yapmak için bu serilerin davranışlarını analiz etmektir.

Tanım

Zaman serisi, bir olgunun zaman içindeki gelişimini temsil eden bir dizi veridir. Şunlarla karakterize edilir

  • Bileşen 1, eğilim: serinin genel gelişimi

  • Bileşen 2, mevsimsellik: değerlerin belirli bir zaman aralığında (hafta / ay / yıl) değişimi

  • Bileşen 3, gürültü (veya artık): tahmin edilemeyen olaylar

Yukarıdaki 3 bileşenden ve doğru istatistiksel model seçiminden yola çıkarak verileri özetlemek ve geleceği tahmin etmek mümkündür.

Modelinizi nasıl seçersiniz?

İki ana model türü vardır, bunlar :

  • Üç bileşenin toplandığı eklemeli model

  • Üç bileşenin çarpıldığı çarpımsal model

Hangi modelin kullanılacağına karar vermek için sezonun trendle birlikte artıp artmadığını gözlemlemek gerekir.

Bu gözlemi yapmak için kullanılan yöntem aşağıdaki gibidir:

  • Maksimumları maksimumlara bağlama

  • Minimaların birbirine bağlanması

  • İki çizgi arasındaki paralelliği inceleyin

  • Eğer çizgiler paralel ise, toplamsal model en uygun modeldir, eğer çizgiler birbirinden uzaklaşıyorsa, çarpımsal model seçilmelidir

Bu modellerin uygulama örnekleri :

Yukarıdaki örnekte, soldaki örnek için iki çizgi arasındaki boşluğun kabaca aynı kaldığını görebiliriz. Dolayısıyla eklemeli model en uygun olanıdır.

Ayrıştırmanın İstatistiksel Metodolojisi

Böylece zaman serisi 3 bileşene ayrıştırılabilir.
Eklemeli modelde ilk olarak trend hesaplanır. Parametrik bir yöntemle çeşitli şekillerde tahmin edilebilir (tipen küçük kareler hesaplaması). Modele bağlı olarak trend çizgisi şu şekilde olabilir:

  • doğrusal: y = a t + b

  • ikinci dereceden / mertebe 2: y = a t² + b t + c

  • üstel: y = a exp(wt)

  • ARIMAdurağan olmayan seriler için

Mevsimsellik için amaç, zaman içinde kendini tekrar eden bir örüntü bulmaktır. Trend bileşeni çıkarılmalı ve mevsim dönemi ile örüntüsü ayırt edilmelidir.

Gürültü veya artık, trend ve mevsimsel bileşenler çıkarıldıktan sonra geriye kalandır. Genellikle bir olarak tahmin edilirbeyaz Gauss gürültüsü.

Not:Çarpımsal bir model için, zaman serisinin doğal logaritmasını alarak toplamsal bir modele ve dolayısıyla önceki ayrıştırmasına indirgeyebiliriz

Bu bileşenlerin her birinin payı, bu bileşenlerin varyansı ve zaman serisinin varyansı hesaplanarak değerlendirilebilir. Matematiksel olarak varyans, bir eğrinin ortalamadan sapmasını açıklar. Varyanstanzaman serisinin varyansı ve bileşenlerinin varyanslarının oranı, bu bileşenlerin her birinin varyansının oranı hesaplanabilir. Bir bileşenin varyans oranı ne kadar büyükse, olguyu o kadar fazla açıklayacaktır. Dolayısıyla, güçlü mevsimselliğe sahip bir piyasanın mevsimsel bileşeni yüksek varyansa sahip olacaktır.
Not:Üç bileşenin varyans paylarının toplamı %100 değildir (karelerin toplamı, toplamın karesine eşit olmak zorunda değildir). Bununla birlikte, %100'e yeniden dayandırılabilir.

Tahmine dayalı modellerin uygulanması

Bir zaman serisinin üç bileşeni tanımlandığında, artık bir tahmin modeli oluşturmak mümkündür.
Zaman serisinin üç parçası belirlenir, günler arasında gezinerek hesaplanabilir (model bitiş tarihinden sonraki bir gün için hesaplanır).
Daha sonra en doğru tahmini yapabilmek için bir zaman serisinin ayrıştırmasını doğru yapmak çok önemlidir.

Bu cevap sorunuzu yanıtladı mı?