메인 콘텐츠로 건너뛰기
독립 테스트

두 변수가 서로 관련되어 있는지 확인

A
작성자: Anthony Cabos
최소 4년 전에 업데이트됨

정의

독립 테스트를 통해 두 변수 X Y 사이에 통계적 연결이 없는지 확인할 수 있습니다. 즉 그들 사이에 통계적으로 유의 한 링크의 지식이없는 경우 두 가지가 독립적이라고하는 X 어떤 방법에 대하여 의견을 허용하지 않습니다 Y .

독립 테스트 χ2 (chi-2) 또는 Pearson의 χ2로 두 변수 간의 독립성을 확인할 수 있습니다.

χ2 독립 테스트 수행

가설 수립

귀무 가설 (H0)이 공식화되고 후자와 변수 X와 Y는 서로 독립적입니다.

거리 계산

공식화 된 가설은 변수 X와 Y가 서로 관련이 없다는 것을 의미합니다.이 조건에서 클래스의 기대치는 다음과 같이 정의 될 수 있습니다.

클래스가 변수 X와 Y의 두 값에 의해 정의된다는 것을 알고 있습니다.

E는 기대 값, O는 관측 값, I는 변수 X의 값 수, J는 변수 Y의 값의 수, N은 숫자 d입니다. '견본.

위에서 예상 한 값과 관찰 된 값 사이에서 거리 측정 χ2가 수행됩니다.

결과 분석

거리 χ2는 자유도에 따라 참조 테이블 . 일반적으로 거리 χ2와 관련된 p- 값이 0.05 미만일 때 가설이 검증 된 것으로 간주됩니다.

값이이 임계 값 미만이면 가설이 검증되고 그렇지 않으면 가설이 무효화됩니다.

독립 가설이 확인되면 두 변수 사이의 연관성을 찾을 수 없습니다.

가설이 무효화되면 두 번째 변수의 값 덕분에 변수를 추론 할 수 있습니다.

χ2 독립 테스트 수행 조건

독립 χ2 테스트는 샘플 수가 30 개를 초과 할 때만 수행 할 수 있습니다.

Cochran 기준도 준수해야합니다.

  • 모든 클래스는 0이 아닌 기대 값을 갖습니다.

  • 클래스의 80 %가 5보다 큰 기대치를 가지고 있습니다.

답변이 도움되었나요?